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The average of 100 steady state temperature cycles, as shown 
in Fig. 6, was used to determine TCR value (–0.204 ± 
0.008%/C) of the optimized sensor material. This TCR value 
corresponds to previously reported values for CNTs and CNT 
devices, which can range from – 0.1 to – 0.57%/°C [3]–[5], 
[7], [8]. This shows that the nanocomposite described in this 
work maintains the sensitivity of MEMS-based CNT 
temperature sensors constructed using strictly a polymeric 
substrate. 

Because the relationship between resistance and 
temperature for this material is linear, dR/dT in (3) becomes 
ΔR/ΔT. This equation is then rearranged to predict 
temperature, T, from a measured resistance, R: 
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where R0 and T0 are the baseline resistance and temperature 
established during a calibration process. Temperature was 
predicted using (4) based on measured resistance of the 
optimized nanocomposite sensor during 100 temperature 
cycles, and compared with a thermocouple control. The results 
of this comparison are shown in Figs. 7 and 8.  

Fig. 7 illustrates the actual and predicted (sensor 
response) temperatures in time for cycling between 25ºC and 
45ºC. This graph is an example of 5-cycles taken from the 
100-cycle set of data. The temperature was ramped up at 30ºC 
per hour and down at 15ºC per hour. The solid (black) line in 
this graph depicts the temperature calculated from the 
measured resistance over the 5-cycles. The red symbols 
correspond to the actual temperature as measured by a 
thermocouple control.  This analysis shows the close fit of the 
calculated temperature, based on the resistance of the 
nanocomposite sensor, with the directly measured actual 
temperature, and verifies the ability of the empirically 
determined (4) to determine temperatures accurately from 
measured resistances.  

Fig. 8 plots temperature as predicted from the sensor 
response compared to the actual temperature for the data 
collected during one hundred temperature cycles of the sensor 
material. After one hundred cycles, the average percent error 
in the calculated temperature of the sensor material is 
approximately 4.29% ± 6.33%. The data displayed no 
appreciable hysteresis, but over 100 cycles total, there was 
approximately 300 Ohms of drift in the initial resistance, 
which stabilized over time to be approximately 6850 Ohms at 
25ºC. The sensitivity, or dR/dT [2], was consistent over the 
entire 100 cycle set (–13.49 ± 0.33 Ohms/ºC). This data 
demonstrates the success of the nanocomposite sensor at 
determining temperature in an accurate and reproducible 
manner. 

 
Figure 7.  Comparison of the actual temperature and the calculated 
temperature from (4) using α  = -0.204 %/ºC.  
 

 
Figure 8.  Comparison of the temperature predicted by (4) to the actual 
recorded temperature. 

V. CONCLUSIONS 
This paper demonstrates the ability of a nylon-

6/MWCNT/polypyrrole nanocomposite to act as a reliable 
RTD in the temperature range of 25ºC to 45ºC. 
Nanocomposite characterization shows percolation behavior at 
the material surface, with 6.6 weight percent MWCNTs being 
the optimal loading. PPy coating enhances the electrical 
conductivity of the material by interconnecting the MWCNTs. 
The nanocomposite has an average negative TCR value of       
–0.204 ± 0.008 %/ºC. This value is comparable to that of 
previously studied carbon nanotubes and devices, but this 
sensor is different in that it is made using strictly a polymeric 
substrate. The material displayed no appreciable hysteresis 
and the average percent error of the calculated temperature 
from the recorded temperature was 4.29% ± 6.33% over 100 
cycles. This material shows promise for use in monitoring 
prosthetic socket environments or for other smart clothing 
applications; however, more research is required to develop 
this material into a robust sensing device for circuit 
integration. Continuation of this work will include 
optimization of the electrospinning parameters including the 
type and concentration of polymer used in the electrospinning 
solution, and polypyrrole film formation. It will also include a 
thorough investigation into humidity and environmental 
effects on the sensor response. 
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